J. Fluid Mech. (1983), vol. 129, pp. 385407 385
Printed in Great Britain

Barge motions in random seas — a comparison of theory
and experiment

By D. T. BROWN, R. EATOCK TAYLOR anp M. H. PATEL

London Centre for Marine Technology, Department of Mechanical Engineering,
University College London

(Received 20 June 1982)

This paper describes a comparison of experimental data and theoretical results for
the motions in waves of large flat-bottomed barges having zero forward speed. The
experimental data are derived from model tests at two scales (1:36 and 1:108). These
consist of measurements of motions in surge, sway, heave, roll, pitch and yaw to
long-crested seas approaching the barge models at two orientation angles (head and
beam seas). The experimental data are compared with results computed from
linearized potential-flow theory, which accounts for the diffraction and radiation of
gravity waves around the barge. The boundary-integral scheme employed to solve
this potential-flow problem is briefly reviewed.

The experimental data at two scales and the theoretical results show that
potential-flow theory is in reasonable agreement with experimental data for all
motions except roll near resonance. These roll-motion discrepancies, due to vortex
shedding from bilge-keel edges, are discussed. Some of the observable effects of scale
in the model tests are highlighted.

1. Introduction

Large ocean-going flat-bottomed barges are commonly used in the offshore oil
industry for the transportation of structures and other large cargoes. The wave-induced
motion response of these barges is an important feature which governs their utility,
since the cargo and sea fastenings have to be stressed to withstand the resultant
inertial forces. In some cases, particularly for roll motions in beam seas, these inertial
forces can exceed normal operational forces by a significant proportion. Thus the
safety of the cargo is critically dependent on accurate predictions of motions of the
barge induced by waves. This paper forms part of a study aimed at improving such
predictions.

1t is well known that the wave excitation and motions of certain large structures
in gravity waves can be accurately estimated by the use of potential-flow theory. For
such structures, viscous effects and the resultant skin-friction and pressure-drag
forces are neglected. The validity of the potential-flow method is, however, limited
by the extent to which smooth unseparated flow is maintained around the body in
question. In particular, if a sharp edge induces local flow separation and consequent
vorticity, the forces due to this viscous phenomenon are sufficient to affect the
accuracy of the potential flow force and motion predictions.

This paper describes an experimental programme and complementary numerieal
results, which are compared to test the validity of the potential-flow theory for a
shallow-draught flat-bottomed barge in waves. The numerical results are obtained
by a boundary-integral approximate technique, which with the governing equations
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F1gure 1. Definition of submerged geometry and axes.

of motion is briefly summarized in §2. Particular emphasis is placed on exploitation
of symmetry of the barge, to achieve accurate numerical results economically. For
the experimental investigation a notional prototype rectangular flat-bottomed barge
of 86.40 m length, 28.80 m beam and 3.78 m draught is adopted. Data are acquired
for two model scales, 1:36 and 1:108, thereby enabling some deductions to be made
regarding the influence of scale effects on measured motions. Discrepancies between
roll-motion results from the potential-flow theory and from the experiments in beam
seas are discussed in some detail.

2. The theoretical model
2.1. Equations of motion

The theoretical predictions of barge motions are based on the assumptions of small
responses in an inviscid fluid. The rigid body motions are designated §; (j = 1, ..., 6),
corresponding to surge, sway, heave, roll, pitch and yaw respectively. These are
measured relative to a fixed set of axes located at the mean position of the centre
of water plane area, with Ox in the plane of symmetry along the barge length and
Oz directed positive upwards, as shown in figure 1. Since the motions are assumed
to be small, it is unnecessary to distinguish between a body coordinate system and
inertial axes fixed in space.

The barge is assumed to float in equilibrium with its centre of mass on the axis
Oz. The equations of motion may be written in the matrix form

M =X, (1
where X is the column matrix of hydrodynamic forces and moments and

c=1& & & & & &) (2)

Because of the symmetry in geometry and mass distribution of the barge, the inertia
matrix M is diagonal except for the terms coupling surge with pitch and sway with
roll (M, Mgy, My, My,).

The hydrodynamic loads are obtained by integrating the fluid pressures p(x, ¥, z,t)
over the submerged surface Sg of the barge. Thus for the force components
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Xj=.[ prdS (j=1,...,3), 3)
SB

where n; are components of the unit normal n into the barge (in this case having the
values +1). The hydrodynamic moment components are

X] = Js p(r X n)J_adS (] = 4, 5, 6), (4)
B
where r is the position vector (z,y, z).

2.2. Numerical determination of hydrodynamic loads

To obtain the fluid pressures one can invoke the assumptions of incompressible
irrotational flow. The derivation is standard (see e.g. Newman 1977), but is briefly
reviewed here in order to provide a basis for discussion of the numerical procedure
adopted in the calculation of X. Thus the fluid motions are described in terms of
a velocity potential @(x, y, z, ¢) such that the fluid velocity is V@. From the linearized
Bernoulli equation, the pressure in a fluid of density p is

P
p=—p5 TPI (5)

Hence the hydrodynamic loads may be obtained by substitution of (5) into (3) and
(4). For a consistent linear theory this requires that the second component of p
(resulting from the vertical pressure gradient) be integrated over the submerged
volume in the displaced configuration, leading to components of the conventional
hydrostatic restoring forces.

It is convenient first to examine loading by an incident sinusoidal wave of
frequency w. The response of the system, assumed linear, is then harmonic in time.
We write

X=Re (A_’ei“t), (6a)
& = Re (Eeit), (60)
@ = Re (P el“?). (6¢)

In the usual manner the spatial potential ¢ may be decomposed into

¢ =¢1+¢ptiv ]Z:l £y (7)

where ¢; is the known potential of the incident wave and ¢p is the diffraction
potential corresponding to scattering of the incident wave by the restrained barge.
The radiation potentials ¢; are associated with unit motions of the barge in each of
its six rigid-body modes in the absence of incident waves. These potentials satisfy
the linearized free-surface boundary condition and the condition that there is no flow
through the seabed. ¢, and ¢; satisfy the radiation condition for three-dimensional
waves at infinity, and conditions ensuring that there is no flow through the submerged
surface Sg.

The complex hydrodynamic loads X are obtained by substituting (5)—(7) into (3)
and (4), leading to the following matrix form:

X =—[—-w!A+iwB+C|E+F. (8)
Here the matrices 4, B and C correspond to added-mass, damping and hydrostatic
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stiffness respectively, and F represents the wave excitation. In terms of the spatial
potentials of (7) one finds

— . 0.
F=—iop | (¢r+po)LLas, (9a)
SB
. 0;
Ay —i0 By = p f ¢k€¢éds. (9b)
SB

Owing to the symmetry of the barge, the matrices A and B only contain terms on
the diagonal and terms coupling surge with pitch and sway with roll. The only terms
in C are the diagonal terms associated with heave, pitch and roll.

To obtain the motion responses of the barge, using (1), one must therefore first
evaluate the diffraction and radiation potentials ¢y, and ¢;. Even for the simple
geometry under investigation here, it is necessary to use a numerical technique. Both
boundary-element and finite-element methods have been applied to the hydrodynamic
problem for a general three-dimensional body (as reviewed by Mei 1978; Eatock
Taylor 1982). Either of these techniques could be used here, and the more recently
developed coupled-element procedure has also been applied to an investigation of
barge-type geometries (Eatock Taylor & Zietsman 1981).

The results presented below have been obtained from a conventional boundary-
element implementation by use of a computer program called HYDRA, the back-
ground to which has been described by Eatock Taylor & Waite (1978). It uses
distributed sources and sinks over the submerged surface of the body (the ‘indirect’
formulation), under the assumption of constant source over a flat quadri-
lateral panel. The following boundary-integral equations for the general case are used:

1

@)= | @ G(p; q)ds, (10a)
SB
21t0(p)+L a(q)a—G%dSmm%@, (10b)
B v ¥4

where ¢(p) is the unknown potential at the point p on the submerged surface Sy and
0¢(p)/0n,, is the given normal velocity, v(p) say. The source strength at p is o(p), the
associated normal into the surface is 7, and the Green function is G(p; g). Equations
(10a, b) are satisfied at a discrete number of points by a collocation technique, leading
to the matrix equations

¢ = Po, (11a)
Qo =v. (11b)

Here the vectors ¢, 6 and v contain the potentials, source strengths and normal
velocities at the collocation points, and the matrices P and Q are associated with
integrals of the Green functions and their derivatives. Solution of (115) for &, and
substitution into (11a), yields the numerical approximation to the potentials on the
surface Sg. Except near ‘irregular’ frequencies, discussed below, close approximations
to the solutions of the boundary-value problems may be obtained with an appropriate
choice of pancls to idealize the submerged surface. From the vectors ¢, approximations

may readily be obtained to the added-mass and damping matrices and the wave
forces.
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FicUre 2. Specification of symmetries in the velocity potentials.

2.3. Numerical features

It is appropriate here to discuss the use of symmetry in the boundary-integral
formulation. For a given computational resource (CPU memory or run time) this
permits more accurate numerical results to be obtained than for an arbitrary body
without planes of symmetry.

For a body such as the simple barge, the submerged surface Sy has two vertical
planes of symmetry. The four quadrants of the semi-infinite fluid region defined by
the planes Oxz, Oyz and the free surface are designated here as the regions 4, B, C
and D, according to the scheme shown in figure 2. The potentials, source strengths
and normal velocities in region a (a = 4, B,C, D), are defined as ¢,, 6,, and v,
respectively. The matrix P,z (cf. (11a)) is related to the Green functions coupling
points in regions & and g (a, 8 = 4, B, C, D), with a corresponding definition for Q.
By consideration of symmetry it may readily be shown that P is of the form

PAA PAB PAC PAD
PAB PAA PAD PAC
PAC PAD PAA PAB '
PAD PAC PAB PAA

P=

and Q has similar symmetries.
To obtain ¢, in terms of the velocities n, it is useful to define the matrix

Y B B
/2 Y B
J=1r 1 -1 | (12)

e | /

where / is the identity matrix of order m (the number of collocation points in one
quadrant). Premultiplication of (11a, b) by the matrix J then leads to the transformed

equations Jé=Pa, (13a)
Qs =Jv, (13b)



390 D. T. Brown, R. Eatock Taylor and M. H. Patel

where =Jg

4 : (14)
P =JPJ, (15a)
a=JaJ. (15b)
The matrix P is found to be of the form
P=4 0 Piy—PupgtPac—Pap 0 0
0 0 P,y+Psp—Psc—Pap 0
0 0 0 P,y—P,p—Pyc+Pap

and @ is similar. Hence (13b) may be solved for & by solving 4 systems of m equations,
rather than one system of 4m equations required in the direct solution of (110).
Substitution of the solution into (13a) leads to

$=JPAQ Uv. (16)
Noting that
J1=1J, (17)
and defining the matrix
S, 0 0 0
57 0o S, 0 O
-1 — 2
Pat=s=|o & s o | (18)
0O 0 0 S

one finds that (16) may be written

b4 I X, X, &, V4
¢ |_1] 2. 2, 2 % Up (19)
¢C 4 23 24 21 22 Uc ’
ép X, X X, %4 _.Up
where
2, =8,+8,+S;+S,,
2,=8-S,+S,-S,,
(20)

;= sl +S2—S3—S4,
2, =8,-8,-S;+S,.

The six radiation potentials are first considered, having the symmetries displayed
in figure 2. Equation (19) shows that these potentials ¢ have the same symmetries
as the velocities v. There are four independent cases, since surge [1] has the same
symmetries as pitch [5], and sway [2] has the same as roll [4]. These cases are
designated as follows: p for heave [3]; q for yaw [6]; r for surge/pitch (1, 5]; s for
sway/roll [2, 4]. Then insertion of the appropriate symmetries into v in (19) yields

¢I‘; =slv§’ ¢qA =s2vga} (21)
¢5 = S,v5, ¢5 =S, v

These are the vectors required in the evaluation of the added-mass and damping
matrices, (9b), and it is evident that exploitation of the two planes of symmetry leads
to a considerable reduction in the computation. It is only necessary to evaluate and
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Ficure 3. Mesh of one quadrant of barge submerged surface (viewed from below).

integrate the radiation potentials over one quadrant, and hence to solve four sets of
equations of order m. ‘

Computation of the wave forces on a body with two planes of symmetry cannot
be reduced to quite the same extent. Only when the wave is propagating in the
direction of a plane of symmetry do the incident and scattered wave potentials
display symmetry or antisymmetry in their real or imaginary parts. They may,
however, be written as the sum of symmetric and antisymmetric components. Use
of (19) still incorporates major economies, since again it is only necessary to solve
the four sets of equations of order m. If then the right-hand sides for the radiation
problems are combined with the right-hand sides for the diffraction problems, the
following equations of order m must be solved: two with two right-hand sides (using
S; and S,), and two with three right-hand sides (using S, and S,). If symmetry were
not exploited, one would need to solve one set of equations of order 4m (involving
a fully populated coefficient matrix), with seven right-hand sides. This saving
complements that associated with reducing by a factor of four the number of terms
required for the matrices P and Q of (11).

In the calculations for the barge, collocation points were employed over one
quadrant of the submerged surface. Each point was at the centre of a rectangular
panel, the aspect ratio of which was in the range 1-1.34. The mesh covering one
quadrantis shown in figure 3. Previous experience hasshown that such a discretization
is capable of yielding accurate results for potential-flow problems whose analytical
solutions are known (e.g. circular cylinders). The major possible source of uncertainty
regarding the numerical method arises from the phenomenon of ‘irregular’ frequencies
discussed by John (1950) and more recently by Ursell (1981). These frequencies are
associated with integral equations of the type given in (10), and they may be predicted
analytically for certain geometries. This problem is briefly reviewed in the appendix,
where an equation is given for the irregular frequencies corresponding to the
rectangular barge. The theoretical motion responses for the two models considered
hetein are evaluated within a frequency range sufficiently below the lowest irregular
frequéncy that no numerical difficulty would arise from this source.

2.4. Motion response {o random waves

The experimental results presented in §3 were obtained by measuring responses of
the barge in long-crested random waves. The plotted data comprise transfer functions
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(response amplitude operators) corresponding to responses of the barge in unit-
amplitude sinusoidal waves. The theoretical and experimental transfer functions for
the motion responses were obtained as follows.

Substitution of (8) and (6) into (1) leads to

[—w*(M+A)+iwB+C)E=F. (22)

One may thus obtain the theoretical responses in waves of amplitude ¢ at frequency
w in direction 8 to Ox as

&(,0) = Hy(w) flw, 6)C (23)
where the receptance matrix is
Hy = [-o0*(M+A)+iwB+C]7?, (24)
and the wave loads are given by
F=flu,6)C (25)
One can thus define the column matrix of response amplitude operators as
Hy(w,0) = Hgl(w) w)flw, 6). (26)

In (26) the numerical solution for the diffraction potential is incorporated in flw, 8),
whereas the terms of H(w) are obtained using the radiation potentials (use of the
well-known relationships between radiation and diffraction potentials (e.g. Newman
1977) would be possible, but does not yield any significant advantage in the present
context).

Equations (23) and (26) provide the basis for extracting the barge response
amplitude operators in random waves. For a long-crested sea having a one-sided wave
elevation spectrum Sy(w), the column matrix of cross-spectra between wave and
response is

The direct response spectra are given by

In the experiments described below, responses &(¢,8) to random waves {(t) are
measured, and the direct and cross-spectra Sy, S, and S are estimated from the
sampled data. From the second and third of these, the modulus and phase of the
‘measured’ transfer functions Hy, are evaluated by means of (27). The independent
estimate of |H§gjL provided by (28), permits an assessment to be made of the reliability
of the theoretical model and the measurement techniques, by examination of the
resulting coherence functions (e.g. Bendat & Piersol 1971).

3. The experimental programme
3.1. Small-scale model tests at University College London

The small-scale tests were performed in a wave tank at the Department of Mechanical
Engineering, University College London. The tank is 14.8 m long, 2.20 m wide, with
1 m water depth. It is fitted with a wedge-type electrohydraulically actuated wave
generator capable of producing long-crested regular and random waves.

A 1:108 scale model of the prototype barge described in §1 was used in these tests.
The model barge dimensions were 800 mm length, 267 mm beam, with a total height
of 100 mm; the latter being chosen to be slightly greater than the value for 1:108
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Scale 1:36 scale 1:108 scale
Physical property factor values values
Length/m a 2.400 0.800
Beam/m a 0.800 0.267
Height/m a 0.340 0.100
Draught/m a 0.105 0.0345
Radius of curvature of rounded keel edge/m a 0.040 0.013
Mass/kg ad 200.8 7.375
Roll radius of gyration/m a 0.244 0.080
Piteh radius of gyration/m a 0.688 0.225
Yaw radius of gyration/m a 0.598 —
Roll moment of inertia/kg m? ab 11.95 0.047
Pitch moment of inertia/kg m? ab 95.05 0.373
Yaw moment of inertia/kg m? a® 71.81 —
Distance of centre of gravity above keel/m a 0.111 0.035
Roll natural frequency/rad s™! o 5.8 10.5
TaBLE 1. Physical properties and scale factors for model barges
Heave-, roll- and pitch-sensing lines
| A
|
Surge [--------------- ___________________
/I/

Sway

Incident-wave
direction for
0° orientation

FicURE 4. Motion-sensing lines on 1:108 scale barge model.

scale, to avoid deck-immersion effects during roll motions. The model was constructed
with marine ply around a softwood frame. The structure was designed such that the
bottom horizontal edges around the keel could be removed and refitted with either
sharp or rounded keel-edges (the latter of 13 mm radius of curvature). The barge
model was ballasted to a draught of 34.5 mm. Table 1 gives a list of the physical
properties of the model barge, associated with ¥Froude-number scaling. It should be
noted that the model barge masses, radii of gyration, moments of inertia and roll
natural frequencies given in table 1 were obtained by measurements on the models
rather than direct application of the scaling rules.

The barge model motions in waves were measured by five conductive plastic
high-resolution low-friction rotary potentiometers mounted with pulleys. Light nylon
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lines were run over the pulleys to pillars on the model deck, the lines being kept taut
by small weights at their free ends.

Asshown in figure 4, three of these lines were vertical and were used to detect barge
heave, roll and pitch motions. The latter were extracted from the differential motions
of the lines in the corresponding vertical planes. The two horizontal lines were used
to sense surge and sway motions. The yaw degree of freedom was not recorded in
these tests. The potentiometers were excited by a d.c. voltage, the central wipers
providing an electrical output proportional to potentiometer-pulley angular displace-
ment. The directions of the measured motion outputs were defined by the system
of axes shown in figure 1.

The potentiometer outputs were recorded by a computer-controlled data-sampling
system. A short preprocessor computer program used the raw potentiometer outputs
to extract roll and pitch motions, to correct for interaction effects between the
motions, and to convert the measured horizontal motions to surge and pitch motions
of the barge centroid.

Barge tests in waves were preceded by static tests to ensure that the model floated
on an even keel, and to measure the position of centre of gravity. Its radii of gyration
about the roll and pitch axes through the centre of gravity were also measured. These
data are presented in table 1.

Since the barge model significantly influences its local wave environment, owing
to wave diffraction and radiation, measurements of the incident wave were made by
removing the model and placing an a.c. reactance-sensing twin-wire wave probe at
the position of the barge vertical centreline. The resultant records of incident
wavetrains were matched with the subsequent tests for the barge in waves by means
of an accurate reference timing signal. This was generated by the microprocessor that
controlled the wavemaker, and enabled the data logger to be triggered into operation
at a precisely defined point in the incident-wave time history.

For the wave tests, the barge was moored by a four-point system of slack, very
elastic lines connecting its corners to the tank sides. The lines remained slack and
floated horizontally on the water surface during normal testing.

Both regular and random wave tests were conducted. The regular wave tests were
run with 0° (head seas) and 90° (beam seas) wave orientations for a frequency range
of 0.5-1.9 Hz spanning the roll and pitch resonant motions of the vessel with wave
amplitudes of 1 and 1.5 cm. A data-sampling rate of 25 Hz was used for a period of
8 s to yield 200 points per channel. Measurements were made with both rounded and
sharpkeel-edge profiles fitted. The random-wave data were also obtained for the barge
in head and beam seas. A Pierson Moskowitz incident-wave elevation spectrum was
used with three significant wave heights of 1, 2 and 3 em and characteristic periods
0f0.7,0.9 and 1.3 s. The control signals driving the electrohydraulic wavemaker were
calculated in real time by digitally filtering a pseudo-random shift-register sequence.
Figure 6 (a) shows the measured spectra for a significant wave height of 3 cm. All the
wave and barge-response data were recorded for 250 s at a 10 Hz sampling rate to
give 2500 data points per measured channel. These data were stored directly on a
computer disc. Section 3.3 describes the processing of this raw data in further detail.

3.2. Large-scale model tests at the Hydraulics Research Station

These tests were conducted in a complex sea basin at the Hydraulics Research
Station, Wallingford. The basin is 18 m square, with a water depth of 1.5 m. Waves
are produced by 10 independent wedge-type paddles situated along one side of the
basin, with wave-absorbing beaches mounted on the other three sides. For these
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’ lines

N _ Deck covers 3.78 m draught [} )
e 1 1
T S . T
K
I % _J eel-e‘dge block Right-angled
——= - T B edge
: i |
I
|
____,_2_8'8_m - L - _ @ 1.44 m radius
| r |
i ‘ I
| . ! ! Keel-edge profiles
H— 7 _ _ ———
e
K 86.4 m >

Fi¢Urg 5. The 1:36 scale-model barge structure. Note that dimensions
given correspond to the full-scale barge.

experiments, each of the 10 electrohydraulically actuated paddles was driven by an
identical signal from a central control unit, thereby generating long-crested waves.
Control signals for regular wave tests were generated by an analogue oscillator.
Random waves were produced in the manner described for the U.C.L. tests in §3.1.

The model used in these tests (shown in figure 5) was a 1:36 Froude-number-scaled
replica of the prototype barge. It was of 2.400 m length, 0.800 m beam, and used with
0.105 m draught. The total barge height of 0.240 m was again slightly higher than
the true scale value to avoid deck immersion at large roll angles. The barge model
was constructed out of 12.7 mm thick marine ply with a 25 mm square softwood
frame. The structure was designed to allow the mounting of 47 mm square keel-edge
blocks around the submerged horizontal edges of the barge. Two choices of keel-edge
profiles were again available: a right-angled ‘sharp’ edge and a rounded profile of
40 mm radius of curvature. Characteristics of the model, including measured position
of the centre of gravity and moments of inertia, are listed in table 1.

Motions of the test barge in all six degrees of freedom (surge, sway, heave, roll,
pitch and yaw) were measured by a system of 12 nylon lines connecting the barge
to potentiometers above and on the sides of the wave basin. Three nylon lines were
run from each of four points on the structure (see figure 5) in a manner similar to
that already described. An analogue signal conditioning system was used to correct
the raw analogue data for interactions between the modes of motion.

As with the 1:108 scale tests, the incident waves were measured, with the barge
removed from the basin, at the vertical centreline position of the barge. The wave
data were recorded, together with a sinusoidal timing signal which enabled the wave
and subsequent motion data to be matched.

A spread mooring system was used from four points on the barge. During normal
testing the mooring lines remained slack and floating on the water surface. Excessive
wave drift was prevented by the mooring lines acting as a hardening spring as they
lifted out of the water and became taut. No measurements were recorded during such
occurrences.

Measurements of barge motions in waves were made for both regular and random



396 D.T. Brown, R. Eatock Taylor and M. H. Patel

50.0

(@)

40.0.

30.0

(mm?2 /(rad/s))

200

10.0

Sge(e)

Frequency (rad/s)

50.0
&)

40.0

30.0 B

(mm?2 /(rad/s))

20.0 -

\

h /.~L. wiw 0.7s

I NN
AN
775 ]

AN ) F"{\_,\‘v

10.0

72
N

Sgr(w)

Frequency (rad/s)

FicureE 6. Wave-elevation power-spectral densities. (a) 1:108 scale tests; (b) 1:36 scale tests.
3 cm significant wave height, 0.7, 1.0 and 1.3 s characteristic periods.

waves of three orientations: 0° (head seas), 45° (quartering seas) and 90° (beam seas)
for both sharp and rounded keel-edge profiles. Regular wave data were taken for three
wave heights of between 1 and 3 cm over a frequency range from 0.5 to 1.60 Hz.
Data were sampled for 8 s at a sampling rate of 16 Hz. The random wave tests were
conducted with nine Pierson Moskowitz wave spectra at three significant wave
heights in the range from 1.8 to 5.4 cm and three characteristic periods (0.7, 0.9 and
1.3 s). Figure 6(b) shows three such spectra for a significant wave height of 3.0 cm.
The random wave data were sampled at a rate of 16 Hz for a period of 256 s giving
4096 data points per measured channel. A total of nine such channels were recorded:
a wave-elevation and timing-signal channel for the wave measurement; and the six
motion channels plus the timing-signal channel again for the motion measurements.
The data were recorded on magnetic tape.

3.3. Data analysis

The data collected from the 1:108 scale wave and corresponding barge-motion
experiments were already correctly timed : both corresponding runs had been sampled



Barge motions in random seas 397

starting from a common trigger signal. For the 1:36 scale tests, however, the
random wave and barge-motion data were matched by a simple computer program.
Thisidentified specific features in the timing signal channels and matched up the wave
and motion measurements data appropriately. Slight variations in the driving clock
frequencies for the wave-generator control signals required the response data to be
slightly stretched and modified by a cubic-spline interpolation technique. Core
records of 3840 data points were obtained after these matching operations.

For both 1:36 and 1:108 scale tests, the regular wave data were first analysed by
a routine which searched for peaks and troughs in order to determine the frequency
of the incident regular wave. This frequency was then used in a simple numerical
harmonic analysis, which computed the amplitudes and phases of each response
relative to the wave. These regular wave data were invariably found to be in
accordance with the random wave transfer functions presented in figures 6-18
inclusive, and they are therefore not presented in further detail herein.

Spectral estimates of the random wave and response data were obtained by
performing fast-Fourier-transform (FFT) operations directly on the time-series data.
The accuracy of the spectral estimates was improved by first obtaining a zero mean
of each sampled channel, then multiplying by a one-tenth cosine-tapered data window
and finally packing out the channel with zeros to make a total of 4096 data points.
The resulting spectral estimates were multiplied by appropriate factors to correct for
the distortions introduced by these last two steps.

The fast-Fourier-transform operations yielded 2049 raw auto- and cross-spectral
estimates at frequency intervals of 0.0245436 rad/s starting from O rad/s. Final
smoothed spectral estimates were obtained from a moving average of 21 adjacent raw
estimates and every third of these was plotted to generate the data of figures 6-19.
The transfer functions are only presented for a frequency range over which there is
sufficient energy in the corresponding wave spectra, and were obtained from the cross-
spectral estimates by means of (27). Over this frequency range the coherence
remained high (> 0.8) except in small regions where nonlinear effects dominated.

4. The results

Only the head- and beam-sea data for the random wave tests are presented here. The
sway, roll and yaw responses for head seas and the surge, pitch and yaw responses
for beam seas remained negligibly small throughout the tests, as is to be expected.
These responses are therefore not considered further.

The incident-wave spectra for both the 1:108 and 1:36 scale tests (figure 6) are
not exceptional. The spectra obtained in the two wave tanks are somewhat different,
although this is not expected to influence the transfer functions evaluated from the
two facilities to any significant extent. The reasons for this behaviour are not clear.
The fast-Fourier-transform routine is not the cause, since it was essentially identical
for the analysis of both sets of test data.

The transfer functions for surge, sway, heave, pitch and roll from the tests at both
scales are presented in figures 7-18. In all cases, full and dashed lines denote the
transfer functions obtained from the rounded and sharp keel-edge profiles respect-
ively. The asterisks denote theoretical results based on the analysis of §2. The
experimental transfer functions obtained from different values of significant wave
height or regular wave heights are measured to be identical within the bounds of
experimental error. No discernible effects of wave-amplitude-dependent nonlinearity
were observed, even for the data at and roll resonance. The feature is illustrated by
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Fioure 7. Heave transfer function in head seas for 1:108 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.

1.0 +

0.5+

Surge amplitude operator (mm/mm)

0 5 10 15
Frequency (rad/s)

Ficure 8. Surge transfer function in head seas for 1:108 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.

0.30 [

0.25 |-

A ha
0.20 AN
0.15 |-

0.10 ~

0.05 +

Pitch amplitude operator (deg/mm)

Frequency (rad/s)

Fiourk 9. Pitch transfer function in head seas for 1:108 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively ; asterisks denote theory.
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FicUure 10. Heave transfer function in beam seas for 1:108 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.
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Ficure 11. Sway transfer function in beam seas for 1:108 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.
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FicurE 12. Roll transfer function in beam seas for 1:108 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.



400 D.T. Brown, R. Eatock Taylor and M. H. Patel

=
T T

0.8 r—

0.6 —

Heave amplitude operator (mm/mm)
=)
[

04 |-

0.2 —

. J
15

Frequency (rad/s)

Ficure 13. Heave transfer function in head seas for 1:36 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.
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Ficure 14. Surge transfer function in head seas for 1:36 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively ; asterisks denote theory.
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Ficure 15. Pitch transfer function in head seas for 1:36 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.

2.0

1.8 -

1.6 —

1.4 T—

0.6 -

Heave amplitude operator (mm/mm)
=)
]
*

04—

0.2 -

15

Frequency (rad/s)

FicURE 16. Heave transfer function in beam seas for 1:36 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively ; asterisks denote theory.
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FicUure 17. Sway transfer function in beam seas for 1:36 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.
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Ficure 18. Roll transfer function in beam seas for 1:36 scale; full and dotted lines denote data
for rounded and sharp keel-edge profiles respectively; asterisks denote theory.

figure 19, showing roll-motion data for the 1:36 scale barge in beam seas for three
different significant incident wave heights. The error bar on the figure gives an
estimate of the measurement error.
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F1ourk 19. Roll transfer function in beam seas for 1:36 scale barge with rounded keel-edges; full,
dashed and dotted lines denote data for significant wave heights of 3.0, 2.4 and 1.9 cm respectively.

4.1. Head seas

Figures 7 and 13 present the heave response to head seas for the 1:108 and 1:36 scale
tests respectively. The transfer functions for sharp and rounded keel-edges are very
close, and they both agree with the potential-flow theory. One evident feature of these
figures is the larger discrepancy between theory and experiment for figure 13 than
for figure 7. It is believed that this discrepancy in figure 13 and the generally poorer
agreement between theory and experiment for the 1:36 scale results is partly related
to the data-collection system in these tests. As described earlier, measurements were
made by placing a wave probe at the barge position, sampling wave elevations and
then sampling barge motions with the barge in the wave-probe position. The two
measurements were matched by also measuring a channel of the wave-generator
driving-clock signal. There was, however, a small drift in this clock rate between
wave-elevation and barge-motion measurements. The drift was accommodated in the
data processing by using interpolatjon techniques to match the wave-elevation and
barge-motion time histories. Small errors of signal level in this procedure are felt to
be responsible for the scatter in the 1:36 scale data and for the discrepancies between
theory and experiment. It may be noted that the kind of elock-rate drift that occurred
in 1:36 scale tests did not occur for the 1:108 scale tests.

Figures 8 and 14 give corresponding data for the surge response in head seas. It
should first be noted that the measured surge-response time history for the 1:36 scale
tests provided evidence of a low-frequency wave-drift oscillation at approximately
0.5 rad /s with a small root-mean-square value of approximately 4 mm. This does not,
however, influence the data plotted in figure 14. The surge-response transfer function
at wave frequencies indicates a difference between the sharp and rounded keel-edge
profiles around the wave cancellation frequency of 8.4 rad/s for 1:108 scale and
4.8 rad/s for 1:36 scale: the sharp keel-edge for both models leading to higher
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responses. A discrepancy between experiment and theory appears at low frequencies.
There is sufficient energy at these low frequencies to discount numerical errors as a
cause of this discrepancy, which occurs for tests at both scales. The probable
explanation is the low-frequency partial standing wave that occurs in wave tanks
of finite length caused by the reflections that arise from the wave-absorbing beach
for these low frequencies. The partial standing wave forms a ‘sloshing” component
in the bulk of the wave-tank fluid and induces enhanced horizontal, oscillating, fluid
velocities and accelerations in the centre of the tank at the test-model position.
Furthermore, experience of testing in different types of tanks indicates that the effect
of these low-frequency standing-wave components are more severe in tanks with
approximately equal length and width than in long tanks of rclatively small width.
This is because the former type of tank has standing waves with variations in both
the longitudinal and transverse directions, which are likely to affect the test model
more severely.

Figures 9 and 15 present data for pitch responses in head seas. The data at both
scales are very close, for both rounded and sharp keel-edges, to the results from
potential-flow theory. There are no unusual features of the pitch response that can
be identified with sufficient confidence.

4.2. Beam seas

Figures 10 and 16 display heave transfer functions for 1:108 and 1:36 scale tests
respectively. The barge responses for both sharp- and rounded-edge cases arc very
close to each other and to the theory. Figures 11 and 17 present sway transfer
functions in beam seas. This mode of motion (like surge in head seas) also exhibited
low-frequency drift effects, which for the 1:36 scale tests were at approximately
0.5 rad/s with a root-mean-square intensity of 2.3 cm for the rounded keel-edges. The
sway transfer functions for rounded and sharp keel-cdges arc very close except for
a region around roll resonance where the sharp keel-edge data are substantially
higher. Furthermore, both sets of experimental data differ from the potential-flow
theory for the lower frequencies. This difference is in opposite senses for the 1:108
and 1:36 scale tests.

Figures 12, 18 and 19 present the roll motion transfer functions in beam seas. These
data indicate substantial differences between the sharp and rounded keel-edge
experimental data as well as between experiment and theory. The plotted roll
responses are centred around the roll resonance frequency (10.5 rad/s for 1:108 scale
and 5.8 rad/s for 1:36 scale). Roll motions for the rounded keel-edges are seen to be
up to 50 9% greater than those for sharp edges near and above the roll resonance
frequency.

During the beam-sea tests, there was a noticeable difference between the local water
motions close to the barge in the cases of rounded and sharp keel-edges, the latter
generating a large amount of turbulence in and under the free surface. Despite the
relatively smoother flow observed close to the rounded keel-edges during the tests,
experiment and theory for this case still disagree substantially at resonance, for tests
at both scales. The relative extent of the discrepancy between the rounded and sharp
edges is approximately the same for both scales. On the other hand the differences
between theory and the rounded keel-edge data are discernibly larger for the 1:108
scale than for the 1:36 scale tests, suggesting that viscous effects are playing a
relatively larger role at smaller seale. Both sets of roll response data also show a slight
reduction in the roll natural frequency from rounded to sharp keel-edge data. This
would be consistent with an increase in damping, due to vortex shedding and fluid
turbulence induced by the sharp keel-edges.
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Ficure 20. Comparison of roll-time history from 1:36 scale tests for two keel-edge profiles; full
and dotted lines denote data for rounded and sharp keel-edge profiles respectively. Significant wave
height = 3.4 ¢m; characteristic period = 0.9 s.

The differences between the rounded and sharp keel-edge experimental data are
also brought out by the plots of roll angle against time displayed in figure 20 for the
two conditions. Peak roll angles for the rounded keel-edges are approximately double
those measured for the sharp keel-edges, thus illustrating the need for a sound
theory to account for the viscous effects at the vessel keel, and more accurately to
predict the roll motion responses of cargo-carrying barges. It is worth noting the
manner in which the difference between the rounded and sharp keel-edge data
develops with time. It suggests a vortex-shedding or turbulence-generation process,
which is triggered off by roll motionsreaching a particular amplitude. The discrepancy
caused by these viscous effects persists for a while before decaying, and the triggering
process is then repeated.

Additional work, not described here, has shown that the observed discrepancies
in roll motion can be accommodated by increasing the potential-flow radiation
damping by approximately 20 9%, of critical damping for the rounded keel-edge and
809 of the same for the sharp keel-edge. Furthermore, visualization studies of the
flow close to the keel-edge reveal the presence of strong vortex shedding and
consequent vortex movements around the keel. Such vortex shedding is not detected
for the rounded keel-edges. These studies suggest that the observed discrepancies in
roll motions can be predicted by an analytical model which uses point vortices in a
background potential flow together with skin-friction calculations to predict the
energy dissipated and consequential additional damping due to these viscous effects.
Patel & Brown (1981 ; and Brown & Patel 1981) give a description of methods used
and some intermediate results.

5. Conclusions

An overview of the results presented here for the motion response to waves of
flat-bottomed barges suggests that, for the incident-wave amplitudes used in the tests,
the motion response is strongly linear with no suggestions of response variations as
a function of wave amplitude. The validity of potential-flow theory for all motions
except sway and roll in beam seas is confirmed, by comparisons of the theory with
tests at two model scales. In the case of sway motions in beam seas, discrepancies
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between theory and experiment at low frequencies cannot be easily explained, but
may be due to excitation by a standing-wave motion component in both wave-tank
facilities. Such an effect is also apparent for surge motions in head seas. Potential-flow
theory is shown to be ineapable of satisfactorily predicting roll motions at resonance
for both rounded and sharp keel-edge profiles; the discrepancy for the latter being
approximately twice as large as for the former. It is generally accepted that the
discrepancy for the sharp keel-edge profiles is due to the added damping induced
by vortex shedding and the generation of turbulence close to the keel-edges. Even
for the rounded keel-edges, however, sufficient drag associated with skin friction exists
to induce the observed diserepancies. Further research on these aspects of the
problem has been discussed in §4.

The testing of an identical barge model shape at two different scales affords a
unique opportunity to investigate the quantitative effects of model scale on measure-
ments such as these. A survey of all the data presented here only reveals possible
scale effects for the roll response in beam seas. This is to be expected, since it is the
relative magnitude of inertia and viscous forces which leads to the occurrence of scale
effects in model testing, and viscous effects only become significant at and around
roll resonance during the experiments reported here.
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Appendix. Irregular frequencies in the boundary-integral analysis

It is well known that Fredholm integral equations of the type given in (10), for
time-harmonic exterior problems, do not have unique solutions at certain frequencies.
John (1950) has given a formal discussion of this difficulty for water-wave diffraction
and radiation, and Shaw (1979) has briefly reviewed recent attempts to overcome it
in numerical solution of such integral equations for general wave problems.

In the numerical approach represented by (11), the matrices P and Q both become
very badly conditioned near an irregular frequency. This is potentially serious unless
one can predict such frequencies, which in the case of the barge is trivial. It may be
shown generally that these occur at the eigenfrequencies of the corresponding interior
Dirichlet problem for the potential. For the barge, therefore, of plan dimensions
2a x 2b and draught A, eigenvalues are required for the problem defined by

Vg =0,
P W, 3
%P0 =0, (A1)

=0 (x=ta, y=14b 2=—h),

where @ is the potential interior to the submerged surface Sg. Direct solution of (A 1)
leads to irregular frequencies w,,,, which are the roots of

w?

k coth kh = ;”", (A2)
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where 2 2

These values may be used to check whether the theoretical solutions for barge
responses are potentially in error as a result of poor numerical conditioning. For the
models discussed here a/b = 3.0, a/h = 11.43, and the lowest irregular frequency is
given by (0% a/h) = 12.14.
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